
Be
Secure - Build A Web Router For $50

After
my Asus
N66U kicked the bucket, I considered a few
options:

another all-in-one router, upgrade to something like an
EdgeRouter, or

brew something custom. When I read the Ars
Technica article espousing

the virtues of building
your own router, that pretty much settled it: DIY it

is.

I’ve
got somewhat of a psychological complex when it comes to rolling

my own
over-engineered solutions, but I did set some general goals: the

end
result should be cheap, low-power, well-supported by Linux, and

extensible. Incidentally, ARM boards fit many of these requirements, and

some like the Raspberry Pi have stirred up so much community activity

that
there’s great support for the ARM platform, even though it may feel

foreign from x86.

I’ve
managed to cobble together a device that is not only dirt cheap for

what
it does, but is extremely capable in its own right. If you have any

interest in building your own home router, I’ll demonstrate here that

doing so is not only feasible, but relatively easy to do and offers a huge

amount of utility - from traffic shaping, to netflow monitoring, to
dynamic

DNS.

I
built it using the espressobin, Arch
Linux Arm, and Shorewall.

My espressoBIN in operation

My
espressoBIN in operation

That
picture shows the board enclosed in a 3d-printed case.

Unfortunately, the
espressobin isn’t popular enough to boast a wide

variety of purchasable
cases as the Raspberry Pi has, but there are some

good models out there
for 3d printing.

As
a side note, the following documentation isn’t meant as a

comprehensive
step-by-step guide to doing the same thing yourself.

Although I do want to
cover many of the choices that went into the build,

configuring something
as important as a router/firewall really shouldn’t

https://www.asus.com/Networking/RTN66U/
https://www.ubnt.com/edgemax/edgerouter/
https://arstechnica.com/gadgets/2016/01/numbers-dont-lie-its-time-to-build-your-own-router/
http://espressobin.net/
https://archlinuxarm.org/
http://www.shorewall.net/

be a copy/paste job and
would better be loosely guided by the steps here

with a thorough
understanding of how and why.

The
Why

Part
One: Hardware

What
About WiFi?

Part
Two: Software

Operating
System

Firewall

Part
Three: The Basic Build

OS
Install

OS
Config

Firewall

DHCP

Part
Four: Interlude

Part
Five: Upgrades

Netflow
Monitoring

Traffic
Shaping

Conclusion

The
Why

There
are plenty of solid routers out there you can buy that aren’t stock

ISP tire fires and would probably be more than suitable (I’m looking at

you lovingly, EdgeRouter Lite). So why bother with all of this? There are

some legitimate benefits here:

It’s
actually very affordable. My router has passed my benchmarks

with flying
colors, and has every feature I could possibly pull in from

Linux (which
is a big list).

https://blog.tjll.net/building-my-perfect-router/#the-why
https://blog.tjll.net/building-my-perfect-router/#part-one-hardware
https://blog.tjll.net/building-my-perfect-router/#what-about-wifi
https://blog.tjll.net/building-my-perfect-router/#part-two-software
https://blog.tjll.net/building-my-perfect-router/#operating-system
https://blog.tjll.net/building-my-perfect-router/#firewall
https://blog.tjll.net/building-my-perfect-router/#part-three-the-basic-build
https://blog.tjll.net/building-my-perfect-router/#os-install
https://blog.tjll.net/building-my-perfect-router/#os-config
https://blog.tjll.net/building-my-perfect-router/#firewall-1
https://blog.tjll.net/building-my-perfect-router/#dhcp
https://blog.tjll.net/building-my-perfect-router/#part-four-interlude
https://blog.tjll.net/building-my-perfect-router/#part-five-upgrades
https://blog.tjll.net/building-my-perfect-router/#netflow-monitoring
https://blog.tjll.net/building-my-perfect-router/#traffic-shaping
https://blog.tjll.net/building-my-perfect-router/#conclusion

It’s
secure. I feel like a new vulnerability is announced for some

consumer
network edge device every month. Compare that to a self-

managed
firewall, and I know exactly which
services are exposed

(and if iptables is broken,
the world has bigger problems). For any

naysayers, by the way, the only port
listening on my firewall is a

random high-numbered port for public-key
only ssh authentication.

So yes, I do think it’s more
secure than some Huawei consumer

router.

It
has great features. Sure, my espressobin can route and serve as a

firewall, but I’ve dropped in some other useful capabilities as well.

It’s
performant. In the minor benchmarks I performed, the

espressobin can
really push traffic without breaking a sweat.

It
was really fun to build. If you a) need a new router or b) want to

cut
your teeth on a single-board ARM project, this could be a good

fit.

Part
One: Hardware
Technically
you could put together a router using any computer with two

NICs, but we
can do equally well with less power, a smaller form factor,

and more
affordably. ARM boards hit the sweet spot: they’re super

cheap, more
powerful than you’d think, and well-supported with so many

variants on the
market.

The
most well-known contender is the Raspberry Pi, but without two NICs

or
gigabit networking, it’s not a good option. Plus, you’re paying for

things
like a GPU that aren’t necessary in a headless network device.

The
good news is that last year, the espressobin was
released, and it’s

super capable. It feels purpose-built for this type of
thing: gigabit

networking, a built-in switch, and no frills that you’d
otherwise need for

something more general-purpose (there isn’t even a
display out, just a

serial console).

https://www.cvedetails.com/vulnerability-list/vendor_id-5979/Huawei.html
http://espressobin.net/

Although
the board is fairly young, both Armbian and Arch
Linux

Arm support the hardware, and both projects
do a great job of it. If you

haven’t explored the world of Linux on ARM,
there’s not a whole lot to

fear here. Armbian and Arch Linux Arm provide
everything you need for

aarch64 natively in the distribution repos, so
there’s little that you’ll run

into that feels foreign on a 64-bit ARM
chip, and it certain feels worth it

when you factor in the affordability
of the hardware and low power

footprint.

Here
are some of the highlights for me:

The
board includes a builtin Topaz networking switch. In my network

testing,
traffic that only crosses the LAN interfaces is

indistinguishable
speed-wise from traffic passing through a vanilla

switch. If you stream
from a NAS or have otherwise high

requirements for inter-device
communication that crosses the router,

this can make a big difference.

The
serial console is a first-class citizen. On my Raspberry Pis, I

sometimes became frustrated having to reach for my HDMI display

when
debugging issues, but the espressobin has a micro USB serial

port for
easy console access.

The
aarch64 chip has been great. Not only has it handled everything

I’ve
thrown at it, but did you know that it’s
unaffected by meltdown?

The Cortex-A53 chips aren’t impacted by
the speculative execution

bug, so that’s an added bonus.

What
About WiFi?

I’ll
make a small note here that I attempted to use the espressobin as a

wireless access point as well. The board has a mini PCIe slot well-suited

for a wireless card, and although it should have
worked, I can definitively

report that it’s not a good idea.

Without
going into painful detail, there’s a slew of problems that don’t

make it
worth the effort. I could not get 5Ghz bands working under any

scenario,
my 2.4Ghz hostapd service became unresponsive every twelve

hours or so,
and speeds were shockingly bad.

https://www.armbian.com/espressobin/
https://archlinuxarm.org/platforms/armv8/marvell/espressobin
https://developer.arm.com/support/security-update

In
general, I think this is a failing of the espressobin hardware. Cards

that
should otherwise be well-supported in Linux (some of the cards I

tested
were ath9k or ath10k-based) simply don’t work with the board’s

mPCIe
interface. Even the officially-recommended cards had problems -

the
RTL8191SE would work intermittently, and even the
card produced by

Globalscaledoesn’t work as advertised.
Incidentally, if you find a well-

supported card on the espressobin, please
do drop a reply on the
related

forum thread I started to discuss this issue.

With
all that being said, my intent at this outset of this project was to

separate my AP from my router, whether I ended up using an

espressobin or
not. Keeping the tasks of firewalling/routing apart from

wireless is a
nice separation of concerns, and you can get very good

dedicated AP
devices without any function outside of broadcasting a

signal to keep it
simple and powerful.

For
what it’s worth, I ended up purchasing a Ubiquity
UniFi device and

have been totally happy with it.

Part
Two: Software
There
are two big choices here: OS and firewalling software.

Operating
System

The
first choice to make is whether you want to hand-roll this from an

distribution that supports aarch64 or use a prebuilt firmware-like
solution

such as OpenWRT. Personally, I’ve found that whenever I use a
shrink-

wrapped solution like Tomato/OpenWrt or FreeNAS for a build, I
usually

get frustrated without being able to really get in there and tweak
things,

so I’ll be using a general-purpose Linux distribution for the
operating

system.

As
I mentioned previously, Armbian and Arch Linux ARM support the

board, and
espressobin has official documentation for Ubuntu (as well as

Yocto, which
I was unfamiliar with until now). While I won’t tell you which

is best for
your use case, here’s why I preferred Arch Linux Arm:

http://www.globalscaletechnologies.com/p-73-80211acbt42-minipcie-wifi-card-1795.aspx
http://espressobin.net/forums/topic/which-pcie-wlan-cards-are-supported/
https://www.ubnt.com/unifi/unifi-ap-ac-lite/

I’m
totally sold on rolling release distributions.

I’m
also sold on running atop bleeding cutting-edge
distros. In the

case of a router, it’s nice to be close to upstream when
potentially

security-related updates are released.

Arch
will provide us with a clean slate to build atop without any

extraneous
services. This means that, with a minimal base, we can

know exactly what
we’ll have installed, exposed, and running after

putting the pieces
together.

I
know and like the Arch Linux ARM people. Hi WarheadsSE!

Firewall

Some
names like PFSense immediately
come to mind, but I’d really like

to run something on Linux since I know
it much better than a BSD (plus,

the best [only?] OS options for the
espressobin are Linux-based).

The
Linux firewall landscape is pretty broad. Although we’ll almost

certainly
use something iptables-based, there’s plenty of higher-level

services that
sit atop iptables (ufw, firewalld, etc.) While you could write

your own
simple iptables ruleset and go with it, I opted to use a firewall

service
since doing so buys us some nice tribal knowledge that the Linux

community
has fostered over the many years they’ve managed iptables

firewalls.

In
general, a good firewalling daemon should:

Fit
in the “healthy OSS project” profile. This means it should be

actively
maintained, been around for a while, and have decent

adoption.

Avoid
complexity. Simple designs are easier to debug, extend, and

operate.

Support
some nice-to-have features, such as support for traffic

shaping and easy
port forwarding configuration.

After
poking around for a while, I settled on Shorewall.
Here are some of

the more noteworthy reasons I went with it:

https://www.pfsense.org/
http://www.shorewall.net/

The
configuration flow is compile-then-apply. This ensures that our

ruleset
is sane before applying it, which also means that there’s no

resident
daemon consuming the device’s resources, which is relevant

on a small
single-board computer.

It
comes with lots of nice historical knowledge built-in, so the iptables

rules that get spit out handle lots of edge cases you wouldn’t

normally
think about.

I’ll
cover more of this later, but packet marking and native support

for
traffic shaping make classful qdiscs easy.

Part
Three: The Basic Build
This
post isn’t meant to be a comprehensive guide, but I wanted to

include the
broad bullet points so that it’s apparent how easy this is to

put
together.

OS
Install

This
one is easy - just follow the Arch
Linux Arm espressobin page. It’s

particularly
important to note the added flags on the mkfs.ext4 command

and additional U-Boot configuration.

OS
Config

Generally,
Arch Linux Arm installs are pretty well set from the get-go. Of

course,
you’ll want to set up a non-root user to administer with that isn’t

the
default account, so remember to disable the alarm user,
change all

passwords, and update the system.

As
a side note, I highly recommend installing the pacmatic package
and

using it in lieu of regular pacman .
It’ll automatically detect updates to

configuration files and help merge
them, as well as inline important news

for breaking package changes.

In
addition, I would suggest setting up etckeeper to
track your firewall

config (the
Arch wiki has a good introduction). I set mine up to

automatically
push to a privately hosted gitolite repo.
To be completely

https://archlinuxarm.org/platforms/armv8/marvell/espressobin
http://kmkeen.com/pacmatic/
http://etckeeper.branchable.com/
https://wiki.archlinux.org/index.php/Etckeeper
http://gitolite.com/gitolite/

honest, I dislike every config management solution out
there, and almost

all of our changes are limited to /etc ,
so this is good enough backup

solution for me at least.

Note
that the default network config for the espressobin works well for

the
router use case:

Both
lan interfaces, lan0 and lan1 ,
are bridged to the br0 interface.

This lets us centralize private-network-facing things like dnsmasq on

a
single virtual interface.

The
public-facing interface is wan .
It’ll fetch its address from the

upstream ISP via DHCP.

The
only changes necessary to get br0 and wan setup
for our router are

two additions: first, assigning the LAN interface a
static IP since it’ll be

the router, and enabling IP forwarding and IP
masquerading

in /etc/systemd/network/br0.network :

[Network]

Address=192.168.1.1/24

IPForward=ipv4

IPMasquerade=yes

And
confirm that the WAN-facing interface will request an address from

the ISP
in /etc/systemd/network/wan.network :

[Network]

DHCP=yes

IPForward=ipv4

[DHCP]

UseDNS=no

I
set UseDNS=no here
since I prefer to use OpenNIC servers instead of my

upstream ISP’s - I’ll
mention where to set these later.

Firewall

The
Arch Linux ARM aarch64 repositories have got the latest version of

Shorewall, which is what I used. My configs aren’t that fancy, and if

you’re seriously considering deploying Shorewall with a connection to the

wild internet, I highly recommend
reading the entirety of Shorewall’s

introduction to a two-interface firewall. It covers the basics of
how you

should set things up with a nice summary of routing and
firewalling in

general.

Basically,
you’ll put the br0 and wan interface
into the right zones and

set any necessary rules in /etc/shorewall/rules .
Remember to let hosts on

your LAN use your DNS server:

DNS(ACCEPT) loc $FW

You’ll
confirm that DHCP is permitted on the LAN interface in

the interfaces file.

I’d
note here that I hit a bug with Shorewall during my firewall setup that

I
found to be patched literally the day before - and Arch Linux ARM had

the
updated package in the upstream repositories already. Score one

point for
using up-to-date distros.

DHCP

dnsmasq
is the perfect fit for a home router. It bundles together a DNS

and DHCP
server into a lightweight daemon that handles everything

you’d need from a
small network, and it’s mature enough that there’s

plenty of documentation
using it for that exact use case.

Note:
I attempted to use systemd’s built-in DHCP server that you can set

with DHCPServer= in .network files,
since it seemed like a lightweight way

to run a DHCP server without extra
software. Without being too verbose,

it’s not worth it, one significant
reason being there’s no way to find

current address leases.

There
are lots of options that should be set here, but the most important

are:

Listen for requests on this interface

interface=br0

http://shorewall.org/two-interface.htm

Address range to draw from

dhcp-range=192.168.1.5,192.168.1.250,255.255.255.0,24h

Default route for clients (the address we used in /etc/systemd/network/br0.network)

dhcp-option=option:router,192.168.1.1

Instead of doling out DNS servers from your upstream ISP who may do dumb

things for things like unresolvable names, you can rely on other DNS servers.

These are from OpenNIC.

server=192.52.166.110

server=66.70.211.246

server=69.195.152.204

server=158.69.239.167

If
you need static assignments or aliases, those are easy to add as well.

Part
Four: Interlude

With
the espressobin serving DHCP and DNS requests on br0 ,
firewalling

via Shorewall, and routing packets between the LAN and WAN,
it’s a

functioning router. At this point, connecting the WAN port to the
ISP

upstream and the two lan0 / lan1 ports
to devices or another switch is all

that’s necessary.

However,
that’s just a start. If we really want
to consider this a router

replacement, there’s some genuinely cool things
we can do to further

beef up its capabilities so it doesn’t feel like a
downgrade from something

like my old Asus N66U.

Part
Five: Upgrades
I
bolted on the following features to my vanilla espressobin router, which

I’ll each cover in turn:

Netflow
monitoring

Traffic
shaping

Netflow
Monitoring

Traffic
visibility is something that I found really valuable with my Asus

Merlin
firmware to track usage. Netflow is the de facto standard for this

sort of
thing, and among all the available options, I really like ipt-

https://github.com/aabc/ipt-netflow

netflow because
it’s a native kernel module so there’s very little overhead

and is very
actively maintained.

It
turns out that I’m probably the first person to use it on the aarch64

architecture, because I
got some help to get it supported on

aarch64 chipset.
The project’s maintainer was (and has

been) super responsive
to bugfixes, so I haven’t had any problems

ensuring the module is
supported on the latest kernels that the Arch

Linux ARM project runs on.

Using
it is a matter of installing the ipt-netflow-dkms-git package
from the

AUR. It’ll build for your kernel because dkms is awesome, and I
dropped

the following into /etc/modules-load.d/ipt-netflow.conf

ipt_NETFLOW

That’ll
load it, and you configure it in /etc/modprobe.d/ipt-netflow.conf :

options ipt_NETFLOW destination=$ip:2055 protocol=5

Where $ip is
your netflow destination. Finally, traffic gets captured by

flowing into a
special iptables target, which can be done directly from

shorewall,
conveniently. In /etc/shorewall/start :

run_iptables -I INPUT -j NETFLOW

run_iptables -I FORWARD -j NETFLOW

run_iptables -I OUTPUT -j NETFLOW

return 0

This
directs all packets on the router to first enter the NETFLOW target

before anything else, which processes the packets and passes them back

to
flow through the normal rules that Shorewall sets up.

Of
course, ipt-netflow needs
a place to send netflow logs to,
but that’s

outside the scope of this post. In my case, I’ve got a Logstash
instance

running on my network with the netflow module running
and

aggregating events in an Elasticsearch cluster. This gets me some

https://github.com/aabc/ipt-netflow
https://github.com/aabc/ipt-netflow/issues/85
https://www.elastic.co/guide/en/logstash/current/netflow-module.html

convenient dashboards and the ability to visualize a wide variety of

information about my network. There’s some default dashboards:

Logstash Netflow Overview Dashboard

Logstash
Netflow Overview Dashboard

Including
some pretty cool ones, like a Geo-IP dashboard:

Logstash Netflow Geo IP Dashboard

Logstash
Netflow Geo IP Dashboard

However,
the most relevant metric I’m interested
in is my total

bandwidth usage because I’ve got an antediluvian ISP that
cares about

data caps. Fortunately that’s easy with the netflow data I’m
collecting:

we can just ask Elasticsearch to sum some fields and get those
metrics

easily. The following dashboard has two visualizations:

The
gauge compares the sum over the time period in question

against the cap
my ISP has set for me, so I can easily see where my

current usage lies
against the cap.

The
timeseries plots bandwidth in bytes over time in order to see

when I’m
using that bandwidth.

Custom Netflow Bandwidth Usage Dashboard

Custom
Netflow Bandwidth Usage Dashboard

Something particularly cool
about this setup is that, because we’re

storing the netflow metrics in
Elasticsearch instead of some other

datastore or time series database, I
can actually focus the queries for

these dashboards in order to do things
like only sum total bytes for

certain CIDR ranges because the underlying
storage engine (Lucene)

understands IP addresses natively. For example,
the following query in

Kibana:

NOT (netflow.dst_addr:"192.168.1.0/24" AND netflow.src_addr:"192.168.1.0/24")

Will
effectively filter out potentially big hunks of bandwidth that happen

between hosts on my LAN, such as streaming between my Kodi host and

NAS
machine. Cool.

Traffic
Shaping

This
turned into a pretty massive undertaking that was a fascinating

rabbit
hole to disappear into. Some stock and most custom router

firmwares offer
some form of QoS or traffic shaping, so I was hoping to

do the same on my
custom router in order to protect some of my traffic

(like Overwatch) from
high latencies.

The
world of QoS technology is a fascinating place. While you could rely

on
some simple schemes like an HTB (hierarchical token bucket) filter,

advancements in packet filtering are surprisingly active and there are
lots

of interesting approaches.

What
I eventually settled on was an HFSC (hierarchical
fair-service curve)

filter. I’ll be honest: the math behind it is so out
of my league that I had

to read several summaries attempting to break it
down for normal

people, and the best explanation that made sense to me was an
excellent

gist that I stumbled across from GitHub user eqhmcow that
explains the

benefits and use of HFSC in practice.

The
tl;dr is this: with an HFSC traffic control class, you can very

effectively prioritize traffic and achieve a good balance between streams

that require high bandwidth and low latencies. It’s not a magic bullet –

you’ll still need to mark what types of traffic are latency-sensitive –
but it

has worked pretty well for me. Without the rules in place, a Steam
or

Blizzard Launcher download will kill ping times, while active HFSC
rules

will gracefully trim those heavy portions of traffic to ensure
interactive

streams aren’t impacted. It’s really great!

The
aforementioned gist does a good job of laying out how to set up

your tc classes
from scratch. However, Shorewall can actually handle

classful traffic
control natively, so we can set up powerful QoS rules

pretty easily. The
following config files are based upon my measured

bandwidth speeds, which
are about 230 down and 10 up.

The
first step is to set the relevant tc classes
for each device in

the tcdevices file:

[root@host ~]# cat /etc/shorewall/tcdevices

#INTERFACE 97%_down 90%_up options(set hfsc)

https://en.wikipedia.org/wiki/Hierarchical_fair-service_curve
https://gist.github.com/eqhmcow/939373

wan 224mbit:200kb 9mbit hfsc

br0 1000mbit:200kb 1000mbit hfsc

Here
the LAN-facing br0 interface
gets full gigabit, but the WAN

interface wan gets
97% of its down speed and 90% of my available up

speed. The reasoning for
these numbers is explained
in the gist - we’re

essentially recreating this
ruleset in Shorewall terms.

Next,
define how packet marks will map to tc classes
in

the tcclasses file:

[root@host ~]# cat /etc/shorewall/tcclasses

#INTERFACE MARK RATE CEIL PRIO OPTIONS

wan:10 1 full/2:10ms:1540 full 1 tcp-ack

wan:11 3 full/2:10ms:1540 full/2 2 default

br0:20 2 full*9/10:10ms:1540 full*9/10 1 tcp-ack

br0:21 3 115mbit:10ms:1540 224mbit 2 default

This’ll
drop important/interactive traffic into classes that get higher

priority.
Of course, we also need to mark the packets that should get that

higher
priority, which is done in mangle :

[root@host ~]# cat /etc/shorewall/mangle

ICMP ping

MARK(1-2) 0.0.0.0/0 0.0.0.0/0 icmp echo-request

MARK(1-2) 0.0.0.0/0 0.0.0.0/0 icmp echo-reply

ssh

MARK(1-2) 0.0.0.0/0 0.0.0.0/0 tcp ssh

Overwatch, Hearthstone, Diablo. 3478-3497 are very general RTP ports.

MARK(1-2) 0.0.0.0/0 0.0.0.0/0 tcp,udp bnetgame,blizwow,6113

MARK(1-2) 0.0.0.0/0 0.0.0.0/0 udp 3478-3497,5060,5062,6120,6250,12000-64000

Local traffic

MARK(1-2) 192.168.1.0/24 192.168.1.0/24

This
sets the high-priority marks (1 and 2) that get handled by

our tc class.
The example includes ICMP pings, ssh, some Blizzard

games, and local
traffic.

Reloading
shorewall should put these into effect. The end result should

permit bulk
traffic such as downloads or streams while not adversely

affecting
interactive traffic latency like ssh, in-game ping times, and so

on. My
informal tests have confirmed this - note that if you decide to

https://gist.github.com/eqhmcow/939373

verify
this yourself, you may observe latency spikes immediately

following an
initial burst of bulk traffic, but HFSC steps in quickly to

enforce limits
to keep latencies low for interactive traffic.

I
have a couple sets of benchmarks that show HFSC in action, but here’s

a
tiny example: how ping latency are impacted when iperf is run in the

background.

Latency impact with and without HFSC

As
you can see, without any traffic control rules in place, bursts of bulk

traffic can have pretty negative impacts on interactive traffic sensitive
to

high latencies. With HFSC, we can avoid those problems.

Conclusion
I’ve
been using my home-brew router for several months now and it

seems to work
great. I haven’t experienced any mysterious connection

drops, speed
issues, or hardware problems over the entire period of

continuous
operation, so I’d consider the build a success. Upgrades are

fine as well;
after a normal sudo
pacmatic -Syu and reboot the system

comes back
online with all the iptables rules and other services as

expected, so
keeping up with the latest kernels and other packages is

straightforward.

To
summarize:

For
an operations-savvy or technically-minded person, a custom

router build
is very doable. ARM single board computers make it

cheap and convenient
to get started.

OSS
solutions for firewalling, traffic shaping, and network monitoring

are
mature and easy to work with. In particular, finely-aged solutions

like
Shorewall and dnsmasq are very well-documented
and have

many years of work put into their documentation and feature
set.

While
routing + DNS + DHCP is a slam dunk, OSS WiFi can be hit or

miss. Your
mileage may vary, but my espressobin just isn’t a good

access point.

This
post is already too long, so I’ll close here. If you have comments or

questions, please do leave one via the Discourse thread attached to the

bottom of this post.

